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THOMSON BACKSCATTERED X-RAYS FROM AN INTENSE LASER BEAM

I. Introduction

Tunable, near monochromatic, high brightness x-rays would be an important taol in
research and medical diagnostics. Synchrotron light sources have produced useful x-rays
for a large user community. In this paper we examine a closely related method of x-ray
generation, Thomson backscattering of x-rays from intense laser beams.! ~® The schematic
is shown in Fig. 1, where an electron beam intersects an incoming laser pulse. Radiation is
backscattered at a double Doppler upshifted frequency. The laser pulse in Fig. 1 acts in a
similar fashion as the static magnetic wiggler in synchrotron light sources or free electron
lasers.”—!!

One advantage to this approach is that, because the wavelength of the laser is many
orders of magnitude smaller than that of static undulators, an electron beam of much lower
energy can be used to generate x-rays of a particular energy. For example, radiation of
0.04 nm wavelength (30 keV) x-rays can be generated by a laser with 1 um wavelength
and electron beam energy of 40 MeV.

An experiment is under way at Vanderbilt University to utilize the FEL as the undn-
lator. The goal is to develop diagnostic medical imaging techniques based on the detection
of atomic species important in biological substances by utilizing the discrete K-edges which
are in the low keV energy range.* A laser undulator has also been proposed as the damping
mechanism of a very low energy (~ 1 MeV) storage ring'? and for emittance reduction.!’

The analytical expression of the Thomson backscattered radiation from a laser undulator

derived in this paper can be applied to all these applications.
I1. Formulation

We are interested in calculating the Thomson radiation intensity pattern and spec-
trum which results when a laser pulse intersects with an electron beam with small initial
transverse momentum going in the opposite direction.

The laser pulse is assumed to be linearly polarized with frequency wy. The vector

potential of the laser pulse can be separated into fast and slow components,

A(n) = A(n)sin(n)eé., (1)
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where n = kpz + wit, kg = wr/c. The pulse shape A(n) and the wavenumber ki (n)
are assumed to be a constant for the interaction time T and sin(n) is a fast oscillating
component.

The energy radiated per unit solid angle (d2) per unit frequency (dw) per electron is

2

T/2 A
/ dt nx (i xf)expliw(t-n-t/c)]| , (2)
—T/2

d?I _ etw?
dwd) ~ 4r2c

where 1 is a unit vector pointing from the radiating electron to the observation point, r
is the electron’s coordinate, T' = L/c is the interaction time, L is the length of the laser
pulse and 8 = ¢~'dr/dt is the electron velocity normalized to the speed of light c. We
consider an electron with small initial transverse velocity, 8z0 = vzo/c and By = vyo/c.
The symbol “~” above the variables denotes a function of ().

It is convenient to use Cartesian coordinates for the velocity and position of the

electrons and spherical coordinates for the Thomson backscattering radiation.®

n x (f x é) = - (ﬁ., cos0cos¢+ﬂ-, cosfsin ¢ — 3, sin 0)ég

- . (3)
+ (Be sing — By cos p)égy,
and
n-r=zsinfcos¢d + ysinfsin¢d + z cosb, (4)
where G, = é -€z, T = I - &, and similarly for the y and z-components.
We separate the two components of the radiation
&I &1 &1
=0 4 ¢ (5)
dwdl dwdfl  dwdf)
and perform the calculation in the variable , where
2
2,2 An/2 = i 83 1 -
‘f,;?) = :w:,cs /-A,,/z dn [g% cosfcosd + g% cosfsing — 5% sin 0- exp [i¥]| , (6)
2
£l  ew? | (477 [65: . 0§ -
= dn | — - = , 7
Todf = anic [—An/2 n 3n sin ¢ an cos | exp [i9)] (N
- w w, . . - .
P = —n-— :(zsmOcosd)-i-ysmOsxmp-rz(l + cos 8)), (8)
wi
2




cédt = (0t /0n)dn, An = w T = 2x N, and N, is the number of periods in the laser pulse.

In the 1-D limit, there are two constants of motion:
e
P, — - A = Py, (9)
c

and

7(1 - ﬂz) = 70(1 - ﬁzo)’ (10)

where P, is the canonical momentum of the electron in the x-direction, and the subsc.ipt
0 denotes the initial value 1418
In the following, we assume that the electron transverse motion is small, i.e., a(82%, +
20)72/2 << 1, laser intensity not exceedingly large, i.e., a << 2v¢/B;0, and k; Ar << 1,
where Ar is the radius of the electron oscillation in the transverse direction driven by the

laser, a = (e/moc?)A and my is the rest mass of the electron. The particle motions are

d:c 1 P
= Wi/ [ﬂ“ o smn] (11a)
dg 1 =
dn ~ (wr /c)ﬂw’ (11b)
and
dz (wL/c) [ﬂl ( ) (=1 + cos(29)) + ﬁzo— sm(-q)] (11¢)
where f,0 = (1 - — B0 — ﬁ2 )!/2 is the initial axial velocity, ; = (1 — (1 + 73(8%,

Bio/ (e (1 + ﬂzo)z))/2 Beo = Bro/(1 + Bu), Byo = Byo/(1 + Bro) and @ = a/(1 + Bio).

Their locations are

F = ——1 3 ’ (2 sinn’' a
e [ winranze [ oy (2) n], (12a)
7= 7y 1+ 8072, (126)

and

~Aan/2 Yo

[ o (&)a- 608(217'))] .

3

Z=20+ ('uT,,l/_c) ['1 (77+A"7/2)+Ez0/n o' ( 2 )sm(ﬂ)
(12¢)




The 6 and ¢ components of the radiation are now

Anj2 _ _ _ @l
/ dn [(ﬁ,o cos @ cos ¢ + B0 cosOsing — (ﬂ1 - W) sin 0)

—-4n/2 0

d2I, N e2w?
dwd} —41r2cwi

-2 2

- i(cos 6cos ¢ + Pzosinf)siny — —‘1-5 sin cos(217)] exp [i]
Yo 474

(13)
2
&1, e2w? An/2 _ ) i - B
dod = e ‘/—An/z dn [(ﬂzo sin@ — [, cos ¢) - ‘—;’— smd;sm'qJ exp [1¥] (14)
where
¥ =1+ i [l - (ﬂ—,o sinf cos ¢ + ﬂ—yo sin @sin ¢ + B (1 + cos 0))] (n+ An/2)
- — (sm0c05¢+ﬂ,o(1 + cos §)) / dq — san
An/2
(15)
+ —(1 + cos @ / —-dq
( ) An/2 4‘70
- —(1 + cos 0)/ — cos(21; )dn'
is the phase and ¥¢ = —(w/wr)An/2 — (w/c)2¢(1 + cosb).
The integral in Eq. (15) may be evaluated to obtain
¥ ~ o + don + d cosn + d, sin(27), (16)

where

do = {1+[ (Bzo 05 ¢ + Byo sin ¢) sin 6 — (ﬂl :)(l+c050)]} (17a)

d, = el [sinOcosqS + Bzo(1 + cosa)] %, (17b)

wr

and ,
w a
= —— 0)—. 17
d, WL(1+cos )873 (17¢)

Substituting (16) into (13) and (14), we obtain

2

dzlo 2 2

(18)
dwdf) 4‘lr2

2
70

a2
[go elo — —I (cosOcos¢ + Bzo sm0) - 4—1 sin 0]




L ?

dwd) ~ 4rlcw?

bl

[90,¢IO + iI: sin ¢]
Yo

where
an/2 .
Io = / df]' exp [i![’(xo,[_?o,ﬂ')]v
—-An/2
an/2 . -
I, = / dn'sinn' exp [ivﬁ(Xo,ljo,n')],
—An/2
An/2 -
I, = / dn' cos(2n') exp [i(x0,8,, 7)),
—-An/2
- ~ ~ a?
90,6 = (Bz¢ cos ¢ + Byo sin $) cos 6 — (ﬂl - Ei) sin 6,
0
and

90,6 = Bzosing — Byo cos ¢

(19)

(20a)

(20b)

(20¢)

(21a)

(216)

Now, we will integrate over n by expanding the exponential of sinn and cosn in terms

of Bessel functions
oD

exp [id, sin 27] = Z Jm(d;)exp [i2m7)],

m=—00

oo

exp [id; cosn] = z Jn(dz)exp [tn(w/2 + 1)) = Z 1" Jn(d:) exp [inn)].

n=-—0oo n=-—oo

Substitute Eqs. (22) and (23) into Egs. (20a)-(20c), we obtain

Io =260 Y " Jn(d:) Y it0e(de)pe,m,
m /4

I = =% ) " Jn(d:) Y i[Je-1(de) + Jes1(de)]pe,m,s
m [4

Iz = _e"'l’o Z Jm(dz) Z il[Jl—2(dt) + Jl+2(d: )]Pl,mv
m L

1 (ei[(2m+l+do)An/2] _ e—i[(2m+l+do)Aq/2]) _

Ptm = 5i(2m + £ + do)

(22)

(23)

(24a)

(24b)

(24¢)

(24d)




II1I. Fundamental and Harmonics

The emission on axis is peaked at the fundamental and harmonic frequencies, which

can be obtained from py m
sin
Ptom = nN, X ’
X

where x = (2m + € + dy)(7N,). Since p;m is peaked at x = 0. The frequencies of the on

axis radiation associated with the peak intensity are

472
L > ’
1+a?/2 + %3(B2, + BL)

where h = —2m — ¢ is the harmonic number.

(25)

wp = hw

The expressions for Iy, I, and I,, written in terms of the harmonic number, become

Io=2¢% ) itpa Y (—1)"Jm(d:)ns2m(d:) (26a)
h=1 m
I = =% i*pn Y (1) Im(d:)Tns2m—1(dz) + Jntzms1(de)] (26b)
h=1 m

L=—e%} i*pn) (-1)"Jm(d)Jnsam-2(de) + Jnramsz(de)l,  (260)

h=1 m

Pr = ”No T Xk ) (26d)

Xk

where x, = (dy — h)nN,.

The analytical expression for the radiated energy per unit solid angle per unit fre-
quency per electron, given by the sum of the expressions (18) and (19), with definitions
given by (17a-c), (21a-b) and (26a-d), are valid for a large range of values of laser ampli-
tudes. For a << 1, only fundamental radiation will be observed. Intensity of harmonic
radiation becomes important for a > 1.

The spectrum width of a single radiating electron is

1
6wh/w,.. it Rf-—,

o

obtained by equating x» = 7. Since the laser pulse typically has a large number of periods,
the spectral width of the radiation, in principle, could be very narrow. However, the
spectral width will be determined by the energy spread and the emittance of the electron

beams.




IV. Numerical Results and Comments

In this section we present numerical results for the energy radiated per unit solid angle
per unit frequency per electron. Two examples are given: 1) no transverse beam velocity
and 2) transverse velocity 3z0 = 0.0075. In both cases, the electron beam has v, = 80.
The normalized laser amplitude is @ = 3.2 X 10~? and the number of periods in the laser
pulse is taken to be 20. The small number of periods is not typical for a laser pulse, but
it illustrates the principles, while avoiding difficulties in displaying data with very narrow
line widths.

For the electron beam without initial transverse velocity, the backscattered radiation
is peaked on axis. Figure 2 is a plot of the energy radiated as a function of frequency
and angle 8 (evaluated in the ¢ = 0 plane), where w; is the frequency of the fundamental
based on Eq. (25). The bandwidth should be 5%, and this is confirmed by Fig. 3, which
is obtained on axis. The solid curve in Fig. 4 is a plot of the peak energy radiated ior each
riven angle 6. As expected the radiation is confined within an angle less than 1/v,. The
dashed curve in Fig. 4 is the corresponding frequency.

Realistic electron beams have finite emittance. If the electron beam has an initial
transverse velocity, the radiation pattern is distorted. Figure 5 is a plot of the energy
radiated as a function of frequency and angle 6 (evaluated in the ¢ = 0 plane), for 8,9 =
0.0075. A plot of the energy radiated on axis as a function of the normalized frequency,
shown in Fig. 6, shows that the radiation field on axis is reduced by about 25% as predicted
by the analytical expression. The solid curve in Fig. 7 is the plot of peak energy radiated
for each given angle  and the dashed curve in Fig. 7 is the corresponding frequency. The
peak frequency is at angle § ~ ., while the peak of the intensity is at a smaller angle.

We have derived an analytic expression for the intensity distribution of Thomson
scattered radiation for the case of a linearly polarized laser pulse incident on a coun-
terpropagating electron beam. We have calculated the effects of small initial transverse
momentum, including the distortion of the intensity distribution, the reduction in on-axis
intensity, and the increase in bandwidth. We are currently extending this work to con-
sider the effects of emittance (for a distribution of electrons) and laser pulse shape on the

scattered radiation.
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Fig. 2. Plot of normalized energy radiated per unit solid angle per unit frequency per electron

as a function of normalized frequency and angle 8 (evaluated in the ¢ = 0 plane) for

an electron with no initial transverse velocity.
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